Removal of PM substances from drinking water by

adsorption onto activated carbon

P. Schumann^{1,2}, M. Muschket³, T. Reemtsma³, M. Jekel², A. S. Ruhl^{1,2}

Highlights

- some substances with very low log D (e.g. oxipurinol; log D = -3.37) show a high affinity towards AC
- log D appears to be a poor descriptor for adsorption prediction onto activated carbon

PM substance measurement

- pre-treatment by azeotropic evaporation
- supercritical fluid chromatography with highresolution mass spectrometry (SFC-HRMS)

• adsorption onto activated carbon appears to be a suitable treatment option for some PM substances

Background

- PM substances are of growing concern due to their tendency to enrich in the water cycle and the risk of reaching drinking water
- little is known about their behavior in natural and technical water treatment processes

Are PM substances removed by activated carbon (AC) despite their high mobility (using log D as an indicator)?

removal calculation using peak area ratios

Removal by adsorption

PM substances exhibit very different adsorbability onto activated carbon (selected substances are shown)

the affinity of a substance towards AC depends on \bullet polarity amongst others \rightarrow low efficiency in case of mobile (polar) compounds is expected

Experiments

batch experiments with pulverized granular activated carbon (Hydraffin CC, Donaucarbon)

100 80 60

PM substance removal (%)

Classification and log D

- categorization of investigated PM substances according to their affinity towards AC at a realistic dose of 10 mg/L
- no correlation of affinity towards AC and log D visible, particularly for aromatic substances

¹ German Environment Agency (UBA), Section II 3.1, Schichauweg 58, 12307 Berlin, Germany, pia.schumann@uba.de

- ² Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
- ³ Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany

SPONSORED BY THE

